#9326. 机器人路径规划问题(洛谷 - P2775)

    ID: 9326 Type: Default 1000ms 125MiB Tried: 0 Accepted: 0 Difficulty: (None) Uploaded By: Tags>启发式迭代加深搜索,IDA*网络流与线性规划24O2优化

机器人路径规划问题(洛谷 - P2775)

说明

机器人 Rob 可在一个树状路径上自由移动。给定树状路径 T 上的起点 s 和终点 t,机器人 Rob 要从 s 运动到 t。树状路径 T 上有若干可移动的障碍物。由于路径狭窄,任何时刻在路径的任何位置不能同时容纳 2 个物体。每一步可以将障碍物或机器人移到相邻的空顶点上。设计一个有效算法用最少移动次数使机器人从 s 运动到 t。对于给定的树 T,以及障碍物在树 T 中的分布情况。计算机器人从起点 s 到终点 t 的最少移动次数。

输入格式

1 行有 3 个正整数 nst,分别表示树 T 的顶点数,起点 s 的编号和终点 t 的编号。

接下来的 n 行分别对应于树 T 中编号为 0,1,,n1 的顶点。每行的第 1 个整数 h 表示顶点的初始状态,当 h=1 时表示该顶点为空顶点,当 h=0 时表示该顶点为满顶点,其中已有 1 个障碍物。第 2 个数 k 表示有 k 个顶点与该顶点相连。接下来的 k 个数是与该顶点相连的顶点编号。

输出格式

程序运行结束时,将计算出的机器人最少移动次数输出。如果无法将机器人从起点移动到终点,输出 No solution!

5 0 3
1 1 2
1 1 2
1 3 0 1 3
0 2 2 4
1 1 3 
3

提示

题目中出现的数字均小于 1000


原题链接

Source

启发式迭代加深搜索,IDA* 网络流与线性规划 24 题 O2优化